3.88 \(\int (a+a \cos (c+d x))^{3/2} (A+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\)

Optimal. Leaf size=147 \[ \frac {a^{3/2} (7 A+8 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}-\frac {a^2 (5 A-8 C) \sin (c+d x)}{4 d \sqrt {a \cos (c+d x)+a}}+\frac {3 a A \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d} \]

[Out]

1/4*a^(3/2)*(7*A+8*C)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d-1/4*a^2*(5*A-8*C)*sin(d*x+c)/d/(a+a
*cos(d*x+c))^(1/2)+1/2*A*(a+a*cos(d*x+c))^(3/2)*sec(d*x+c)*tan(d*x+c)/d+3/4*a*A*(a+a*cos(d*x+c))^(1/2)*tan(d*x
+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.47, antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3044, 2975, 2981, 2773, 206} \[ -\frac {a^2 (5 A-8 C) \sin (c+d x)}{4 d \sqrt {a \cos (c+d x)+a}}+\frac {a^{3/2} (7 A+8 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}+\frac {3 a A \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{4 d}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(3/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

(a^(3/2)*(7*A + 8*C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*d) - (a^2*(5*A - 8*C)*Sin[c
+ d*x])/(4*d*Sqrt[a + a*Cos[c + d*x]]) + (3*a*A*Sqrt[a + a*Cos[c + d*x]]*Tan[c + d*x])/(4*d) + (A*(a + a*Cos[c
 + d*x])^(3/2)*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 3044

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n +
2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ[b
*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0
])

Rubi steps

\begin {align*} \int (a+a \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx &=\frac {A (a+a \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {\int (a+a \cos (c+d x))^{3/2} \left (\frac {3 a A}{2}-\frac {1}{2} a (A-4 C) \cos (c+d x)\right ) \sec ^2(c+d x) \, dx}{2 a}\\ &=\frac {3 a A \sqrt {a+a \cos (c+d x)} \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {\int \sqrt {a+a \cos (c+d x)} \left (\frac {1}{4} a^2 (7 A+8 C)-\frac {1}{4} a^2 (5 A-8 C) \cos (c+d x)\right ) \sec (c+d x) \, dx}{2 a}\\ &=-\frac {a^2 (5 A-8 C) \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {3 a A \sqrt {a+a \cos (c+d x)} \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{8} (a (7 A+8 C)) \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=-\frac {a^2 (5 A-8 C) \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {3 a A \sqrt {a+a \cos (c+d x)} \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{2 d}-\frac {\left (a^2 (7 A+8 C)\right ) \operatorname {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}\\ &=\frac {a^{3/2} (7 A+8 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}-\frac {a^2 (5 A-8 C) \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {3 a A \sqrt {a+a \cos (c+d x)} \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.58, size = 118, normalized size = 0.80 \[ \frac {a \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x) \sqrt {a (\cos (c+d x)+1)} \left (2 \sin \left (\frac {1}{2} (c+d x)\right ) (7 A \cos (c+d x)+2 A+4 C \cos (2 (c+d x))+4 C)+\sqrt {2} (7 A+8 C) \cos ^2(c+d x) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^2*(Sqrt[2]*(7*A + 8*C)*ArcTanh[Sqrt[2]*Sin[(c + d*
x)/2]]*Cos[c + d*x]^2 + 2*(2*A + 4*C + 7*A*Cos[c + d*x] + 4*C*Cos[2*(c + d*x)])*Sin[(c + d*x)/2]))/(8*d)

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 189, normalized size = 1.29 \[ \frac {{\left ({\left (7 \, A + 8 \, C\right )} a \cos \left (d x + c\right )^{3} + {\left (7 \, A + 8 \, C\right )} a \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (8 \, C a \cos \left (d x + c\right )^{2} + 7 \, A a \cos \left (d x + c\right ) + 2 \, A a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{16 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

1/16*(((7*A + 8*C)*a*cos(d*x + c)^3 + (7*A + 8*C)*a*cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*
x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x
 + c)^2)) + 4*(8*C*a*cos(d*x + c)^2 + 7*A*a*cos(d*x + c) + 2*A*a)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*co
s(d*x + c)^3 + d*cos(d*x + c)^2)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 2.42, size = 1018, normalized size = 6.93 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x)

[Out]

1/2*a^(1/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*(16*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*
a^(1/2)+7*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*co
s(1/2*d*x+1/2*c)+2*a))*a+7*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/
2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+8*C*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*
c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+8*C*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*s
in(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a)*sin(1/2*d*x+1/2*c)^4-4*(7*A*2^(1/2)*(
a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+16*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+7*A*ln(-4/(-2*cos(1/
2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+7*A
*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2
*c)+2*a))*a+8*C*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2
)*cos(1/2*d*x+1/2*c)+2*a))*a+8*C*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a
^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a)*sin(1/2*d*x+1/2*c)^2+18*A*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*
a^(1/2)+7*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*co
s(1/2*d*x+1/2*c)+2*a))*a+7*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/
2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+16*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+8*C*ln(-4/(-2*cos(
1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+8
*C*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1
/2*c)+2*a))*a)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))^2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^2/sin(1/2*d*x+1/2*c)/(a*cos(1/2
*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [B]  time = 1.06, size = 2025, normalized size = 13.78 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

-1/16*(12*a*cos(4*d*x + 4*c)^2*sin(3/2*d*x + 3/2*c) + 48*a*cos(2*d*x + 2*c)^2*sin(3/2*d*x + 3/2*c) + 12*a*sin(
4*d*x + 4*c)^2*sin(3/2*d*x + 3/2*c) + 48*a*sin(2*d*x + 2*c)^2*sin(3/2*d*x + 3/2*c) + 160*a*cos(7/2*d*x + 7/2*c
)*sin(2*d*x + 2*c) + 168*a*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) + 72*a*cos(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c)
- 24*a*cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2*c) - 4*(a*sin(4*d*x + 4*c) + 2*a*sin(2*d*x + 2*c))*cos(13/2*d*x + 13
/2*c) + 12*(a*sin(4*d*x + 4*c) + 2*a*sin(2*d*x + 2*c))*cos(11/2*d*x + 11/2*c) + 48*(a*sin(4*d*x + 4*c) + 2*a*s
in(2*d*x + 2*c))*cos(9/2*d*x + 9/2*c) + 4*(12*a*cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2*c) - 20*a*sin(7/2*d*x + 7/2
*c) - 21*a*sin(5/2*d*x + 5/2*c) - 3*a*sin(3/2*d*x + 3/2*c))*cos(4*d*x + 4*c) - 7*(sqrt(2)*a*cos(4*d*x + 4*c)^2
 + 4*sqrt(2)*a*cos(2*d*x + 2*c)^2 + sqrt(2)*a*sin(4*d*x + 4*c)^2 + 4*sqrt(2)*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*
c) + 4*sqrt(2)*a*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*cos(2*d*x + 2*c) + 2*(2*sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)
*a)*cos(4*d*x + 4*c) + sqrt(2)*a)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin
(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c),
cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 7*(sqrt
(2)*a*cos(4*d*x + 4*c)^2 + 4*sqrt(2)*a*cos(2*d*x + 2*c)^2 + sqrt(2)*a*sin(4*d*x + 4*c)^2 + 4*sqrt(2)*a*sin(4*d
*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*a*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*cos(2*d*x + 2*c) + 2*(2*sqrt(2)*a*co
s(2*d*x + 2*c) + sqrt(2)*a)*cos(4*d*x + 4*c) + sqrt(2)*a)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*
d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x +
 3/2*c))) + 2) - 7*(sqrt(2)*a*cos(4*d*x + 4*c)^2 + 4*sqrt(2)*a*cos(2*d*x + 2*c)^2 + sqrt(2)*a*sin(4*d*x + 4*c)
^2 + 4*sqrt(2)*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*a*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*cos(2*d*x +
2*c) + 2*(2*sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*cos(4*d*x + 4*c) + sqrt(2)*a)*log(2*cos(1/3*arctan2(sin(3/
2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 -
2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x
 + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 7*(sqrt(2)*a*cos(4*d*x + 4*c)^2 + 4*sqrt(2)*a*cos(2*d*x + 2*c)^2 + sq
rt(2)*a*sin(4*d*x + 4*c)^2 + 4*sqrt(2)*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*a*sin(2*d*x + 2*c)^2 +
4*sqrt(2)*a*cos(2*d*x + 2*c) + 2*(2*sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*cos(4*d*x + 4*c) + sqrt(2)*a)*log(
2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos
(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin
(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 4*(a*cos(4*d*x + 4*c) + 2*a*cos(2*d*x + 2*c)
+ a)*sin(13/2*d*x + 13/2*c) - 12*(a*cos(4*d*x + 4*c) + 2*a*cos(2*d*x + 2*c) + a)*sin(11/2*d*x + 11/2*c) - 48*(
a*cos(4*d*x + 4*c) + 2*a*cos(2*d*x + 2*c) + a)*sin(9/2*d*x + 9/2*c) + 4*(12*a*sin(2*d*x + 2*c)*sin(3/2*d*x + 3
/2*c) + 20*a*cos(7/2*d*x + 7/2*c) + 21*a*cos(5/2*d*x + 5/2*c) + 9*a*cos(3/2*d*x + 3/2*c))*sin(4*d*x + 4*c) - 8
0*(2*a*cos(2*d*x + 2*c) + a)*sin(7/2*d*x + 7/2*c) - 84*(2*a*cos(2*d*x + 2*c) + a)*sin(5/2*d*x + 5/2*c) - 24*a*
sin(3/2*d*x + 3/2*c) - 4*(a*cos(4*d*x + 4*c)^2 + 4*a*cos(2*d*x + 2*c)^2 + a*sin(4*d*x + 4*c)^2 + 4*a*sin(4*d*x
 + 4*c)*sin(2*d*x + 2*c) + 4*a*sin(2*d*x + 2*c)^2 + 2*(2*a*cos(2*d*x + 2*c) + a)*cos(4*d*x + 4*c) + 4*a*cos(2*
d*x + 2*c) + a)*sin(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 56*(a*cos(4*d*x + 4*c)^2 + 4*a*
cos(2*d*x + 2*c)^2 + a*sin(4*d*x + 4*c)^2 + 4*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*a*sin(2*d*x + 2*c)^2 + 2
*(2*a*cos(2*d*x + 2*c) + a)*cos(4*d*x + 4*c) + 4*a*cos(2*d*x + 2*c) + a)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c),
 cos(3/2*d*x + 3/2*c))))*A*sqrt(a)/((sqrt(2)*cos(4*d*x + 4*c)^2 + 4*sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(4
*d*x + 4*c)^2 + 4*sqrt(2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*sin(2*d*x + 2*c)^2 + 2*(2*sqrt(2)*cos(
2*d*x + 2*c) + sqrt(2))*cos(4*d*x + 4*c) + 4*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^3,x)

[Out]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^3, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)*(A+C*cos(d*x+c)**2)*sec(d*x+c)**3,x)

[Out]

Timed out

________________________________________________________________________________________